Groonga 3.0.9 Source Code Document
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
mt19937ar.c
Go to the documentation of this file.
1 /*
2 ** mt19937ar.c - MT Random functions
3 **
4 ** See Copyright Notice in mruby.h
5 */
6 
7 #include <stdio.h>
8 #include "mt19937ar.h"
9 
10 /* Period parameters */
11 //#define N 624
12 #define M 397
13 #define MATRIX_A 0x9908b0dfUL /* constant vector a */
14 #define UPPER_MASK 0x80000000UL /* most significant w-r bits */
15 #define LOWER_MASK 0x7fffffffUL /* least significant r bits */
16 
17 static unsigned long mt[N]; /* the array for the state vector */
18 static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */
19 
20 void mrb_random_init_genrand(mt_state *t, unsigned long s)
21 {
22  t->mt[0]= s & 0xffffffffUL;
23  for (t->mti=1; t->mti<N; t->mti++) {
24  t->mt[t->mti] =
25  (1812433253UL * (t->mt[t->mti-1] ^ (t->mt[t->mti-1] >> 30)) + t->mti);
26  t->mt[t->mti] &= 0xffffffffUL;
27  }
28 }
29 
31 {
32  unsigned long y;
33  static unsigned long mag01[2]={0x0UL, MATRIX_A};
34  /* mag01[x] = x * MATRIX_A for x=0,1 */
35 
36  if (t->mti >= N) { /* generate N words at one time */
37  int kk;
38 
39  if (t->mti == N+1) /* if init_genrand() has not been called, */
40  mrb_random_init_genrand(t, 5489UL); /* a default initial seed is used */
41 
42  for (kk=0;kk<N-M;kk++) {
43  y = (t->mt[kk]&UPPER_MASK)|(t->mt[kk+1]&LOWER_MASK);
44  t->mt[kk] = t->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
45  }
46  for (;kk<N-1;kk++) {
47  y = (t->mt[kk]&UPPER_MASK)|(t->mt[kk+1]&LOWER_MASK);
48  t->mt[kk] = t->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
49  }
50  y = (t->mt[N-1]&UPPER_MASK)|(t->mt[0]&LOWER_MASK);
51  t->mt[N-1] = t->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];
52 
53  t->mti = 0;
54  }
55 
56  y = t->mt[t->mti++];
57 
58  /* Tempering */
59  y ^= (y >> 11);
60  y ^= (y << 7) & 0x9d2c5680UL;
61  y ^= (y << 15) & 0xefc60000UL;
62  y ^= (y >> 18);
63 
64  t->gen_int = y;
65 
66  return y;
67 }
68 
70 {
72  t->gen_dbl = t->gen_int*(1.0/4294967295.0);
73  return t->gen_dbl;
74  /* divided by 2^32-1 */
75 }
76 
77 /* initializes mt[N] with a seed */
78 void init_genrand(unsigned long s)
79 {
80  mt[0]= s & 0xffffffffUL;
81  for (mti=1; mti<N; mti++) {
82  mt[mti] =
83  (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
84  /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
85  /* In the previous versions, MSBs of the seed affect */
86  /* only MSBs of the array mt[]. */
87  /* 2002/01/09 modified by Makoto Matsumoto */
88  mt[mti] &= 0xffffffffUL;
89  /* for >32 bit machines */
90  }
91 }
92 
93 /* initialize by an array with array-length */
94 /* init_key is the array for initializing keys */
95 /* key_length is its length */
96 /* slight change for C++, 2004/2/26 */
97 void init_by_array(unsigned long init_key[], int key_length)
98 {
99  int i, j, k;
100  init_genrand(19650218UL);
101  i=1; j=0;
102  k = (N>key_length ? N : key_length);
103  for (; k; k--) {
104  mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
105  + init_key[j] + j; /* non linear */
106  mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
107  i++; j++;
108  if (i>=N) { mt[0] = mt[N-1]; i=1; }
109  if (j>=key_length) j=0;
110  }
111  for (k=N-1; k; k--) {
112  mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
113  - i; /* non linear */
114  mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
115  i++;
116  if (i>=N) { mt[0] = mt[N-1]; i=1; }
117  }
118 
119  mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
120 }
121 
122 /* generates a random number on [0,0xffffffff]-interval */
123 unsigned long genrand_int32(void)
124 {
125  unsigned long y;
126  static unsigned long mag01[2]={0x0UL, MATRIX_A};
127  /* mag01[x] = x * MATRIX_A for x=0,1 */
128 
129  if (mti >= N) { /* generate N words at one time */
130  int kk;
131 
132  if (mti == N+1) /* if init_genrand() has not been called, */
133  init_genrand(5489UL); /* a default initial seed is used */
134 
135  for (kk=0;kk<N-M;kk++) {
136  y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
137  mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
138  }
139  for (;kk<N-1;kk++) {
140  y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
141  mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
142  }
143  y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
144  mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];
145 
146  mti = 0;
147  }
148 
149  y = mt[mti++];
150 
151  /* Tempering */
152  y ^= (y >> 11);
153  y ^= (y << 7) & 0x9d2c5680UL;
154  y ^= (y << 15) & 0xefc60000UL;
155  y ^= (y >> 18);
156 
157  return y;
158 }
159 
160 /* generates a random number on [0,0x7fffffff]-interval */
161 long genrand_int31(void)
162 {
163  return (long)(genrand_int32()>>1);
164 }
165 
166 /* generates a random number on [0,1]-real-interval */
167 double genrand_real1(void)
168 {
169  return genrand_int32()*(1.0/4294967295.0);
170  /* divided by 2^32-1 */
171 }
172 
173 /* generates a random number on [0,1)-real-interval */
174 double genrand_real2(void)
175 {
176  return genrand_int32()*(1.0/4294967296.0);
177  /* divided by 2^32 */
178 }
179 
180 /* generates a random number on (0,1)-real-interval */
181 double genrand_real3(void)
182 {
183  return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0);
184  /* divided by 2^32 */
185 }
186 
187 /* generates a random number on [0,1) with 53-bit resolution*/
188 double genrand_res53(void)
189 {
190  unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6;
191  return(a*67108864.0+b)*(1.0/9007199254740992.0);
192 }
193 /* These real versions are due to Isaku Wada, 2002/01/09 added */